→ t0444564 : 已收錄 12/31 14:38
課程名稱︰偏微分方程式一
課程性質︰數學研究所基礎課
課程教師︰林太家
開課學院:理學院
開課系所︰數學系、數學研究所、應用數學科學研究所
考試日期︰2014年12月30日(二),10:20-12:10
考試時限:110分鐘
試題 :
Test 3 12/30/2014
1. (20%)
Let u solve
u_tt - △u = 0 in R^3 ×(0,∞)
u = g, u_t =h on R^3 ×{t=0},
where g,h are smooth and have compact support. Show there exists a constant C
such that
|u(x,t)|≦C/t (x∈R^3, t>0)
2. (20%)
Solve 2 2
u_tt - c u_xx = x for 0<t and all x
u = x, u_t = 0 for t = 0.
3. (20%) 2
(Equipartition of energy). Let u∈C(R ×[0,∞)) solve the initial-value
problem for the wave equation in one dimension:
u_tt - u_xx = 0 in R ×(0,∞)
u = g, u_t = h on R ×{t=0}.
1 ∞
Suppose g,h have compact support. The kinetic energy is k(t):= ---∫(u_t)^2dx
1 ∞ 2 -∞
and the potential energy is p(t) := ---∫ (u_x)^2dx.
2 -∞
Prove
(i) k(t)+p(t) is constant in t,
(ii) k(t) = p(t) for all large enough times t.
4. (20%)
Prove the uniqueness of the following problem:
u_xx - u_t = f(x,t) for 0<x<a, 0<t<T
u(x,0) = g1(x) for 0<x<a,
u_x(0,t) = g2(t) for 0≦t≦T,
u_x(a,t) = g3(t) for 0≦t≦T,
where g1, g2 and g3 prescribed functions.(意思就是smooth function)
5. (20%) ∞ n 2
Let f∈C (R ) be a smooth function and u∈C(Ω) be a solution of
△u = f in Ω,
∂
u + -----u = 0 on ∂Ω,
∂n n n 2
where △ is the standard Laplacian, Ω={(x1,...,xn)∈R : Σ xi < 1, xn > 0}
∂ i=1
and ----- is the normal derivative on the boundary ∂Ω. Prove that
∂n
lim |▽u(x)| ≦ C,
x→0
x∈Ω
where C is a positive constant.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.7.214
※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1420007870.A.009.html