看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程式一 課程性質︰數學研究所基礎課 課程教師︰林太家 開課學院:理學院 開課系所︰數學系、數學研究所、應用數學科學研究所 考試日期︰2014年12月30日(二),10:20-12:10 考試時限:110分鐘 試題 :                  Test 3              12/30/2014 1. (20%)  Let u solve                u_tt - △u = 0 in R^3 ×(0,∞)                u = g, u_t =h on R^3 ×{t=0},  where g,h are smooth and have compact support. Show there exists a constant C  such that                |u(x,t)|≦C/t (x∈R^3, t>0) 2. (20%)  Solve                2    2                u_tt - c u_xx = x for 0<t and all x                u = x, u_t = 0 for t = 0. 3. (20%)               2  (Equipartition of energy). Let u∈C(R ×[0,∞)) solve the initial-value  problem for the wave equation in one dimension:                u_tt - u_xx = 0 in R ×(0,∞)                u = g, u_t = h on R ×{t=0}.                                  1 ∞  Suppose g,h have compact support. The kinetic energy is k(t):= ---∫(u_t)^2dx                     1 ∞           2 -∞  and the potential energy is p(t) := ---∫ (u_x)^2dx.                     2 -∞  Prove  (i) k(t)+p(t) is constant in t,  (ii) k(t) = p(t) for all large enough times t. 4. (20%)  Prove the uniqueness of the following problem:  u_xx - u_t = f(x,t) for 0<x<a, 0<t<T   u(x,0) = g1(x) for 0<x<a,  u_x(0,t) = g2(t) for 0≦t≦T,  u_x(a,t) = g3(t) for 0≦t≦T,  where g1, g2 and g3 prescribed functions.(意思就是smooth function) 5. (20%) ∞ n                2  Let f∈C (R ) be a smooth function and u∈C(Ω) be a solution of                 △u = f in Ω,                ∂             u + -----u = 0 on ∂Ω,                ∂n            n  n  2  where △ is the standard Laplacian, Ω={(x1,...,xn)∈R : Σ xi < 1, xn > 0}     ∂                          i=1  and ----- is the normal derivative on the boundary ∂Ω. Prove that     ∂n                lim |▽u(x)| ≦ C,                x→0                x∈Ω  where C is a positive constant. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.7.214 ※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1420007870.A.009.html
t0444564 : 已收錄 12/31 14:38