看板 Chang_Course 關於我們 聯絡資訊
It say that for any $x\in V(G)$, show that $C-x$ satisties Tutte's condition: For $S\subseteq V(C-x)$, $o((C-x)-S)\leq |S|$. If $x\notin V(C)$ for some odd component $C$, and when we check the case of $S=\emptyset$, then $o((C-x)-S)=o(C-S)=o(C)=1>0=|S|$ and hence it fails. Even if $x\in V(C)$ for some even component $C$, and also when we check the case of $S=\emptyset$, then $o((C-x)-S)=o(C-x)\geq 1>0=|S|$ and hence it fails, too. In my opinion, it should be $x\in V(C)$ for odd component $C$, and it still can be used to prove Tutte's theorem. p.s. Here I use latex lanquage: \in := belongs to, \notin := not belongs to \subseteq :=contained in \leq :less or equal \emptyset := empty set ※ 編輯: killyou 來自: 140.112.231.114 (12/04 23:37)