看板 DiscreteMath 關於我們 聯絡資訊
good explanation! ※ 引述《euphrate ()》之銘言: : ω := the set of all positive integer : Let : ι: A ─→ ω is a 1-1 mapping : Claim : A is countable : Proof : : Let B = ι(A), the image set of ι, B is a subset of ω : Since ι: A ─→ B is 1-1 & onto, |A| = |B| : So we only need to verify that B is countable : : If B is finite, then B is countable (in your definition) : Otherwise B is infinite, then define a sequence b_k by : : b_1 = min(B) (such b_1 must exist, by well-ordering property) : b_2 = min(B─{b_1}) : b_3 = min(B─{b_1, b_2}) : ... : We can see that for any β in B, there is a k s.t : b_k = β : As a result, b : ω ─→ B, defined by b(x) = b_x is 1-1, onto : Hence B ~ ω : In any case B, as well as A, is countable. : 此題的意義在於 ι: A ─→ ω is a 1-1 mapping : 代表了 |A| ≦ |ω| 也就是說 A 的"個數"至多等於ω的"個數" : 但ω的個數已是所有集合中最小的(所謂的countable) : 所以 A的個數必然也是最小的(countable) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 101.64.102.210