作者shmm (shmm的暱稱)
看板ESOE-91
標題[微積分日記] CH11
時間Fri Apr 11 22:53:42 2003
寶哥要我po 系花要我po
所以先po一點 希望能拋磚引玉啦
先來我所知道的 ch11
Chapter 11 Infinite Series
p.644 Theorem 11.1.6
∞
if Σ ak converges, then ak -> 0 as k -> ∞
k=0
! converges, diverges與起始點無關
! 證明"iff"時要順證也要反證
p.648 # 判別 converges, diverges
* <1> ak -> 0 as k -> ∞
*** <2> Integral Test
** (a) Basic Comparison
*** (b) Limit Comparison
<3> *** (a) Root Test (次方) ┐
├ 與 1 有關
*** (b) Ratio Test (階乘) ┘
! Σf(k) 可用 ∫f(k) dk 來比
p.652 ! e^k >> k >> lnk
p.653 **** Theorem 11.2.6 The Limit Comparison Test
孔:"一定要很熟練"
[30sec] Theorem 11.2.6 的 proof
p.657 Theorem 11.3.1 The Root Test
# The Root Test
(ak)^(1/k) -> ρ
ρ<1, converges
ρ>1, diverges
ρ=1, use "Limit Comparison"
p.658 Theorem 11.3.2 The Ratio Test
# The Ratio Test
a(k+1)
——— -> r
ak
r>1, diverges
r<1, converges
r=1 use "Limit Comparison"
! 想成等比級數來理解
[10sec] EX3
p.662 Definition 11.4.3 Conditional Convergence
! 不可經過加減乘除
p.663 Theorem 11.4.4 Alternating Series Test
# Alternating Series Test
(a) 後項 < 前項
(b) ak -> 0
[30sec] Theorem 11.4.4 的 proof
p.665 [10sec] EX5
p.668 # Taylor Polynomials
用一高次多項式,來盡量表示一函式
(k)
∞ f (0)
Pn(x) = Σ ———— x^k
k=0 k!
孔:"非常重要呀 寫下來"
p.671 Theorem 11.5.1 Taylor's Theorem
! Rn+1(x) 可視為誤差
p.674 ! 問 Taylor Series 可以不必知道 remainder
p.680 # 有3種方法
1. Po(x) = g(a)
2. Integeration by part
3. 移軸法 [30sec] 孔:"最簡單 但是觀念要清楚"
p.683 (11.6.5) 孔:"ln0 = ∞ 不可以呀"
p.684 ! Power Series 是在求得 radiu convegagentive
p.686 Figure 11.7.1
! 端點收斂不確定
p.689 [20sec] EX6
p.694 [10sec] EX2
p.695 [10sec] EX3
p.704 [10sec] Supplement To Section 11.8
PS. 阿海後面因為那一堂之前2天沒睡 所以該堂啄龜
故都只有記到秒數 希望有記的人回po吧
-=給別人方便就是給自己方便=-
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.240.76
→ Rayblade:推上色... 推 61.217.56.73 04/11
→ strikeout:真是太偉大了... 推 210.85.187.47 04/11