看板 Economics 關於我們 聯絡資訊
※ 引述《washburn (Just a game)》之銘言: By definition, If X is a convex set, then : x'' = alpha*x + (1-alpha)*x' belongs to LR+, for any alpha belongs to [0,1]. To show B{p,w} is convex, for any a, b belong to B{p,w}, we need to show that c= alpha*a + (1-alpha)*b also belongs to B{p,w}. First, c belongs to LR is obvious. Second, p*c=p*(alpha*a + (1-alpha)*b) =alpha*p*a+(1-alpha)*p*b <=alpha*w + (1-alpha)*w <= w By definition, B{p,w} is a convex set. Q.E.D. : Walrasian budget set:B {p,w} = {x belongs to LR: p*x <= w}。 : 請問,為什麼在 X 為 convex 時,B {p,w} 也是 convex? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.124.125.58 ※ 編輯: welly 來自: 122.124.125.58 (01/22 00:31)
washburn:你好快! 211.77.241.2 01/22 00:33