看板 Economics 關於我們 聯絡資訊
Almost sure convergence 和 Convergence in probability 定義如下: Let {bn(.)} be a sequence of real-value random variables, and there exists a real number b. Almost sure convergence: bn(.) converges almost surely to b if P{w:bn(w)→b}=1 as n→∞. Convergence in Probability: bn(.) converges in probability to b if P(w:|bn(w)-b|<ε)→1 as n→∞ for every ε>0. Almost sure convergence 和 Convergence in probability 可分別以 Kolmogorov strong law of large numbers 以及 Chebyshev weak law of large numbers 為例: Let bar(Zn) = (sum Zt)/n. Kolmogorov strong law of large numbers: bar(Zn) →{a.s.} μ as {Zt} i.i.d. with μ = E(Zt) < ∞. Chebyshev weak law of large numbers: bar(Zn) →{p} μ as E(Zt) = μ, var(Zt) = σ^2 < ∞ for all t and cov(Zt,Zs) = 0 for t ≠ s. 我個人有兩個問題想請教: 第一, 雖然我了解兩種 convergence 及 l.l.n. 的定義, 但我想知道 Almost sure convergence 和 Convergence in probability 有沒有比較直觀的解釋? 第二, {Zt} i.i.d. 的範例很容易找, 例如丟銅板就是最簡單的例子. 但是 E(Zt) = μ, var(Zt) = σ^2 < ∞ for all t and cov(Zt,Zs) = 0 for t ≠ s 的例子, 對我個人而言很難想像. 能不能提供一個簡單的範例? -- http://tonyy271828.spaces.live.com/ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 211.77.241.2 ※ 編輯: washburn 來自: 211.77.241.3 (01/31 20:00)
douglash:ASC: 給我時間, 我一定把得到她XD 61.60.127.18 02/01 13:34
douglash:CIP:給我時間 我一定可以打敗所有情敵Orz 61.60.127.18 02/01 13:36
washburn:帥啊d哥! 211.77.241.3 02/01 13:37