→ HamBearJ:感謝感謝!! 118.171.133.60 01/03 01:39
※ 引述《HamBearJ (C'EST CA QUE)》之銘言:
: 來源: 94政大企研
: 科目: 經濟學
: 問題: The expansion path for a constant returns to scale production function
: (A) is a straight line through the origin with a slope greater than one
: if w > v.
: (B) is a straight line through the origin with a slope less than one
: if w < v.
: (C) is a striaght line through the origin though its slope cannot be
: determined by w and v alone.
: (D) has a postive slope but is not necessarily a straight line.
: 答案: (C)
: 我的想法: 我不知道要怎麼在滿足固定規模報酬的生產函數下, 確定擴張線是通過原點
: 的直線. 我試著假設一個Cobb-Douglas生產函數滿足一階齊次, 確實是如此
: 請大家幫忙看一下, 謝謝!!
定義:Expansion path (EP) ,在給定要素價格不變下,生產產量Q改變下,所有的
均衡連線軌跡。
模型如下:
min wL + rK
s.t Q=Q(L,K)
w為工資給定,r為資本的價格給定,Q為外生給定
利用拉氏函數可以設定成如下:
L = wL + rK + 入 ( Q - Q ( L , K) )
F.O.C
w = 入MPL (1)
r = 入MPK (2)
Q = Q(L,K) (3)
由(1) (2) 解得
w/r = MPL / MPK (4)
Q = Q (L,K) (5)
因為已知 Q = Q (L, K)為固定規模報酬<=>(若且唯若) Q為一階齊次
寫成 Q(aL,aK)=aQ(L,K),令a=1/L
Q(1,K/L)=Q/L => q(K/L)=Q/L , 定義k=K/L
又可以推得:Q=L*q(K/L) , 定義 dq(k)/dk = MPk
因此 MPK=MPk
另外 MPL= q - MPk*K/L = q-MPk*k
由此代入(4) 可知:
w/r = {q-MPk*k}/MPk
=> w/r = q(k)/MPk(k) - k
-----------------------------------------------------------------------------
例子:
令 Q = L^(1-a)K^(a)
=> q(k)=k^a
MPk(k)=ak^(a-1)
=> w/r = k^a / ak^(a-1) - k
=> w/r =k/a - k = (1/a-1)k
=> k= (w/r)*(1-a)/a , 0<a<1 , k=K/L
=> K= {(w/r)*(1-a)/a}*L ,若L=0 則 K=0
因此確實,可以解得EP為一通過原點的直線。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.119.234.27