看板 FJU-STAT95B 關於我們 聯絡資訊
=================================開始複製====================================== #include <C:\devcpp\all.h> int main() { long int i, j; srand((unsigned)time(NULL)); cout.setf(ios::fixed); cout.precision(10); // $$$$$$$$ Start your program here $$$$$$$$$$$$$$$$$$$$$ Matrix Y; Y.read_from_file("c:\\devcpp\\twoway.dat",1); Y.print(1); Two_way_class(4,6,1).print(0); Matrix C = Two_way_class(4,6,1); Matrix X = J_Mat(Y.row(),1); X.print(0); X.append_column(gen_dummy(C.col(1))); X.print(0); Matrix SST, SSR_f, SSR_r, SSE_f, SSE_r; Part_SS_X_full(Y,X,SST,SSR_r,SSE_r); cout << "Reduced Model SS = " << endl; SSR_r.print(3); SSE_r.print(3); SST.print(3); X.append_column(gen_dummy(C.col(0))); Part_SS_X_full(Y,X,SST,SSR_f,SSE_f); cout << " Full Model SS = " << endl; SSR_f.print(3); SSE_f.print(3); SST.print(3); double F = ((SSE_r-SSE_f)/3.0)/ (SSE_f/15.0); cout << "paramatric approach under normal assumption" << endl; cout << "F_value = " << F << endl; cout << "P_value = " << F_r_tailed_prob(F,3,15) << endl; Partial_F_test(Y,X,6,8); double SSE0 = SSE_f; Univar SSE_Monte_Carlo; for(i=0; i <1000; i++) { X.randomize_row(6,8); Part_SS_X_non_full(Y,X,SST,SSR_f,SSE_f); SSE_Monte_Carlo.push_back(SSE_f); } SSE_Monte_Carlo.freq_dist(-2); cout.precision(4); cout << "Monte_Carlo Randomization Test P_value = "; cout << SSE_Monte_Carlo.emp_CDF(SSE0) << endl; /* srand(66); Matrix K(6,4); K.bin_ran(100,0.5); K.print(0); K.randomize_row(1,2).print(0); */ // $$$$$$$ End of your program $$$$$$$$$$$$$$$$$$$$$$$$$ cin.get(); return 0; ====================================複製結束=================================== -- ▄▄▄▄▄◣ ◢▄▄▄▄▄ KEI 沒穿過 acer 水皎嫂 凱馨食品建大 雅芳食品 Mizuno 這套戰服 雲林尚讚 Mizuno南投最美▇▇ 九泰光電 廣吉食品 ///小美 別說你 inon 參加過 ittt 優 美 興家安速 F-1 ▄▄▄▄▄◣ ◢▄▄▄▄▄ KEI 沒穿過 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.136.161.81
abidog:洗文章數喔 06/01 16:19