看板 FJU_CLASS 關於我們 聯絡資訊
上學期期中考(答案全打要很久 所以只寫大方向喔) 1.Consider dy/dx= -(x2)y , and answer the following questions: (i)please draw the isoclines (ii)please draw the direction field (iii)attempt the approximate integral curves (iv)in case y(0)=1, show that there is a unique solution by NOT solving the problem (i)(ii)(iii)圖描仔細就好 (iv) f(x,y)=-(x2)y ⊿f/⊿y=-x2 is continuous near x=0 by the uniqueness and existence thm. there is only one sol. 2.xy'(3(x2)+2y)- 5y((x2)+y) - (x4) =0 Please solve y(x). f(x,y,y')=xy'(3(x2)+2y)- 5y((x2)+y) - (x4) f(tx,(t^m)y,(t^m-1)y')=(t^r)f(x,y,y') could find it's a isobraic fn. with r=4 m=2 f(1,y/x2,y/x4)= f(x,y,y')/x4 = (3/x)y' + (2/x3)yy' - (5/x2)y - 5(y2/x4) -1 ----(1) let u=y/x2 thus y=u(x2) , y'=2ux+(x2)u' substitute into (1) .. 整理後得 xu'=(u2-u+1)/(2u+3) (1/x)dx = (2u+3)/(u2-u+1) du .. 積分後得 ln|cx/(u2-u+1)|=(8/√3)arctan((2u-1)/√3) ln|(cx5)/(y2-(x2)y+x4)|=(8/√3)arctan((2(y/x2)-1)/√3) 3.Find the orthogonal trajectories of the curves represented by the differential equation r^n=(a^n)sec(nθ) , where n is an positive integer and a is an arbitrary const. r^n=(a^n)sec(nθ) n(r^(n-1))r' = n(a^n)sec(nθ)tan(nθ) tanΨf= r/r' = cot(nθ) tanΨg= -1/tanΨf =-tan(nθ)= rg/rg'= rg/(drg/dθ) drg/rg=-cot(nθ)dθ ln|rg|= -(1/n)ln|sin(nθ)|+c rg^n=csc(nθ) :orthogonal trajectories 4.y=y(x) and y'=(-1/x)+y/x+(y2)/(x3) please find the solution of y y=x and y=-x are 2 PSs y'=(-1/x)+y/x+(y2)/(x3) ...(1) x'=-1/x+x/x+(x2)/(x3) ...(2) (-x)'=-1/x+(-x/x)+(-x)2/x3 ...(3) (1)-(2) (y-x)'=(y-x)/x + (y2-x2)/x3 (y-x)'/(y-x) = 1/x + (y+x)/x3 ...(4) (1)-(3) (y+x)'/(y+x) = 1/x + (y-x)/x3 ...(5) (4)-(5) (y-x)'/(y-x) - (y+x)'/(y+x) = 2/x2 ln|(y-x)/c(y+x)|= -2/(x2) y= x[1+ce^(-2/x)]/[1-ce^(-2/x)] 5.(x2+siny)y'+2xy=0 please solve y(x) 2xydx + (x2+siny)dy M=2xy N=x2+siny Mx=Ny=2x ...exact x y u=∫ 2tYodt + ∫ (Xo2+sint)dt=c Xo Yo Let Xo=0 Yo=π/2 (x2)y-cosy=c 就這樣啦@@""用BBS打數學式子真是噩夢啊 這是以前的題目..今年我沒把題目抄下來...不過也是大同小異啦 老師每年都會出像第一題的做圖題.. 還有第二題arctan的積分會積出很醜的答案..今年也有一樣的.. 其實期中考的題目都蠻基本的 跟講義裡的題目類似 期末考會比期中難非常多倍...想保住不被當的話..期中考高點吧@@"" -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.112.85.198 ※ 編輯: goshfju 來自: 59.112.85.198 (02/18 04:04)