看板 FJU_physics 關於我們 聯絡資訊
1.Find the first solution xy"+2y'-xy=0 [20point] 2.From the generating function of the Legendre polynomial 1 ∞ g(x,t)=------------- Σ Pn(x)t^n , √(1-2xt+t^2) n=0 show that (1) P(0)=(-1)^n.1.3.5…(2n-1)/(2.4.6…2n) 2n 1 2 (2) ∫P^2(x)dx = ----- [30point] -1 n 2n+1 3.Solve y"-xy'-y=0 [20point] Note: 1 1 1 ln(1-x)=x - ---(x^2) - ---(x^3) - ---(x^4) - … 2 3 4 1 -----=Σx^n 1-x 1 1 1.3 1.3.5 1.3.5.7 ---------- = 1 + ---x + ----(x^2) + -------(x^3) + ---------- + … (1-X)^(1/2) 2 2.4 2.4.6 2.4.6.8 * 2.(1)(2)的2n及n為P的下標 po一篇文章花了快1小時..... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.117.126.150 ※ 編輯: fgfdsa 來自: 59.117.126.150 (01/14 02:35) ※ 編輯: fgfdsa 來自: 59.117.126.150 (01/14 02:36)
lice0225:給你推一個 感謝大大無私的分享 01/14 03:28
FriNa1130:這一篇文章值 549 銀 01/14 04:12
qaz7788123:交哥也還沒睡阿 01/14 04:20
FriNa1130:一回來就睡了~睡到一點多起床@@~ 01/14 04:41
leopardbabe:不用對他們那麼好啦!!!XDD 01/14 17:21
fgfdsa:這個是怕我考卷弄丟用的........... 01/14 20:00