看板 GMAT 關於我們 聯絡資訊
※ 引述《oranger (從新出發)》之銘言: : 167. : If x, y, and z are integers and xy + z is an odd integer, is x an even : integer? : (1) xy + xz is an even integer. : (2) y + xz is an odd integer. : Ans:A : 176. : If x and y are positive integers, is the product xy even? : (1) 5x - 4y is even. : (2) 6x + 7y is even. : Ans: D : 請大家幫忙解答了 謝謝!! : 我想請問大家在遇到像這種算奇數偶數的題目時, : 該怎麼解題 : 我每次只要碰到這種題目都會死的很難看 /_\ 好苦惱 167 由題目可知有兩種情況:(i) xy = odd and z = even (ii) xy = even and z = odd (1) 考慮(i),可得xz = odd,但z = even,故不可能得出xz = odd,矛盾 考慮(ii),可得xz = even,又z = odd,則x必定為even ..........sufficient (2) 考慮(i),可得 x = odd,代入(2)選項符合 考慮(ii),x = odd or even代入(2)選項也符合,故無法確定......insufficient 176 (1) 4y = even,and we know 5x-4y = even,then 5x must be even since 5 is odd,so we get x is even therefore,xy is even..............sufficient (2) 6x = even,and we know 6x+7y = even,then 7y must be even since 7 is odd,so we get y is even therefore,xy is even..............sufficient -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.160.160.161
oranger:終於搞懂了!! 謝謝解答:) 09/01 00:51