※ 引述《denizee3 (妮)》之銘言:
: How many different prime numbers are factors of the positive integer n ?
: (1) Four different prime numbers are factors of 2n.
: (2) Four different prime numbers are factors of n^2.
: Answer: B
: 我看了PP筆記裡面的解釋
: 但是我還是不太懂為什麼答案是B
: 是否可以請各位大大解釋這一題的思路
: 謝謝!
(1) 若2(prime number)是n的prime factor,
則當2n有四個prime factors (2,x,y,z)時
n也有四個prime factors (2,x,y,z)
若2不是n的prime factor,
則當2n有四個prime factors (2,x,y,z)時
n只有三個prime factors (x,y,z) => insufficient
關鍵是2本身就可能成為一個prime factor
(2) 當n^2有四個prime factors時 = x^a * y^b * z^c * q^d
則n= x^(a/2) * y^(b/2) * z^(c/2) * q^(d/2)
其中 a/2 b/2 c/2 d/2 必為正整數 (否則n就不是positive integer)
n也有四個ptime factors => sufficient
結論是不管幾次方prime number數目都一樣
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 76.172.54.4
※ 編輯: ipas3 來自: 76.172.54.4 (08/26 14:27)