看板 Grad-ProbAsk 關於我們 聯絡資訊
改成原題目如下: n Let V be a subspace of R ,Alinear transformation T :V→V is said to be symmetric if (Tu,v)=(u,Tv) for all u,v€V. Here (x.y) is the dot product of vectors x and y. n A subspace W of R is said to be invariant under T if Tw€W ,for all w€W. (a)Show that T is symmetric if and only if the matrix representation of T relative to some orthonormal basis is symmetric. ┴ (b)Show that if W is invariant under T, then the orthogonal complement W of W is also invariant under T. 我想請問的是第二題的部份 再度麻煩大家了 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.59.30.152 ※ 編輯: ILzi 來自: 210.59.30.152 (03/20 12:06)