看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《WHYGGAAYY (WHYGGAAYY)》之銘言: : Ix =∫∫∫(y^2+z^2)dxdydz of a mass of density 1 in a region T : T : about the x-axis. Find the Ix when T is as follows. : The cylinder y^2+z^2≦a^2 , 0≦x≦h : 答案是 πha^4/2 Ix = ∫∫∫ (y^2 + z^2) dxdydz T 2π a h = ∫ ∫ ∫ (r^2)(r) dxdrdθ 0 0 0 (令 y = (r)(cosθ) , z = (r)(sinθ) , 則 |J| = r , 0≦r≦a , 0≦θ≦2π) 2π a h = ∫ ∫ ∫ r^3 dxdrdθ 0 0 0 2π a |x = h = ∫ ∫ (r^3)(x) | drdθ 0 0 |x = 0 2π a = ∫ ∫ (h)(r^3) drdθ 0 0 2π r^4 |r = a = ∫ (h)(-----) | dθ 0 4 |r = 0 2π a^4 a^4 |2π (a^4)(h)(π) = ∫ (h)(-----) dθ = (h)(-----)(θ) | = ------------ 0 4 4 |0 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.115.26.91