看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《ICRO (聖文大色胚)》之銘言: : y"+9y=tcost : 這題我想好久 : 但想不出來 : 還有 : x^4y"+2x^3y'-y=8e^3/x : 麻煩大家了 y"+9y=tcos(t) yh = c1 cos(3t) + c2 sin(3t) 用參數變異法(應該是這名子吧@@) 設yp = u1(t) cos(3t) + u2(t) sin(3t) = u1 y1 + u2 y2 yp' = u1'y1 + u2'y2 + u1y1' + u2y2' => 令 u1'y1 + u2'y2 = 0 ----(1) yp" = u1'y1' + u2'y2' + u1y1" + u2y2" 將yp , yp' , yp" 代回 y"+9y=tcos(t) 得 u1'y1'+u2'y2' = tcos(t) ----(2) y1=cos(3t) , y2=sin(3t) , y1'=-3sin(3t) , y2'=3cos(3t) (1) , (2) 得 u1' = -[t cos(t) sin(3t)] / 3 u2' = {t [cos(t)^2]} / 3 化簡 u1' = [-tsin(4t)]/6 + [-tsin2t]/6 u2' = t/6 + [tcos(2t)]/6 u1 = ∫{[-tsin(4t)]/6 + [-tsin2t]/6}dt = [tcos(4t)]/24 + [sin(4t)]/96 + [tcos(2t)]/12 +[sin(2t)]/24 u2 = ∫{t/6 + [tcos(2t)]/6}dt = (t^2)/12 + [tsin(2t)]/12 - [cos(2t)]/24 yp = u1y1+u2y2 = {[tcos(4t)]/24 + [sin(4t)]/96 + [tcos(2t)]/12 +[sin(2t)]/24} cos(3t) + {(t^2)/12 + [tsin(2t)]/12 - [cos(2t)]/24} sin(3t) y = yh + yp ={c1 cos(3t)+c2 sin(3t)} + { {[tcos(4t)]/24 + [sin(4t)]/96 +[tcos(2t)/12] + [sin(2t)]/24} cos(3t) + {(t^2)/12 + [tsin(2t)]/12 - [cos(2t)]/24} sin(3t) } # 只是這樣cos sin再合成化簡就不知道裡面會不會出現齊次解 不過也可能不用再化簡了XD 我是懶的繼續做下去 ~.~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.134.22.184