推 littleyinyo:不過u1'跟u2'不會推,看的不是很懂@@是從12式推出來? 04/10 16:57
是的 已補上 sorry
※ 編輯: Secertman 來自: 220.134.22.184 (04/10 17:06)
※ 引述《littleyinyo (I AM YIN)》之銘言:
: 題目是:x^2y''+xy'+y=sec(lnx)
: 算到最後卡在Yp的求解,有誰知道怎麼算嗎?
令 x=e^t t=lnx dt/dx = 1/x
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~化簡不用說了XD 代回原式
yh = c1 cos(t) + c2 sin(t)
設yp = u1 cos(t) + u2 sin(t) = u1y1 + u2y2
yp' = u1'y1 + u2'y2 + u1y1' + u2y2' 令 u1'y1 + u2'y2 = 0 ---(1)
yp" = u1'y1' + u2'y2' + u1y1" + u2y2" 代回得 u1'y1' + u2'y2' = sec(t) ---(2)
y1 = cos(t) , y2 = sin(t) , y1' = -sin(t) , y2' = cos(t)
由 (1),(2) 可得
u1' = -sin(t) sec(t)
u2' = 1
u1 = -∫[sin(t) sec(t)]dt
= ln[cos(t)]
u2 = ∫1 dt
= t
yp = u1y1 + u2y2 = {cos(t) ln[cos(t)]} + t sin(t)
= {cos(lnx) ln[cos(lnx)]} + lnx sin(lnx)
yh = c1 cos(t) + c2 sin(t)
= c1 cos(lnx) + c2 sin(lnx)
y = yh + yp
#
應該是這樣吧@@
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.134.22.184