看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《littleyinyo (I AM YIN)》之銘言: : 1.Please find the solution of ordinary differential equation : (x^2+1)y''-2xy'+2y=6(x^2+1)^2 : Boundary condition y(x=0)=-1,y(x=1)=5 : 2.Given an ordinary differential equation as : d^2y dy : x------ + 2(x-1)------- +(x-2)y=0 : dx^2 dx : If boundary condition is given as y(0)=y0,solve for y(x). : 先謝謝大家囉,變係數實在沒有頭緒.. set y(x)=xv(x) and y'(x)=v(x)+xv'(x) y''(x)=2v'(x)+xv''(x) 2 2 6(x +1) 帶入 DE v'' + --------- v' = --------- 2 x x(x +1) set z=v' z'=v'' 2 2 6(x +1) z' + --------- z = --------- 2 x x(x +1) 2 x 積分因子 I(x)= --------- 2 x +1 x^2+1 6(x^2+1) x^2 z(x)= -------- S -----------*---------- dx X^2 x X^2+1 x^2+1 z= (3x^2+c) --------- = v' x^2 c v= x^3 + (3+c) X - --- + c* x y=xv=(x) * ( x^3 + (3+c) X - --- + c* ) x = x^4 + (3+c) x^2 - c + c*x y(0)=-1 ---> c=1 y(1)=5 ---> 1+(3+1)-1+c*=5 ---> C*=1 y = x^4 + (3+1) x^2 - 1 + 1x = x^4 + 4*x^2 - 1 + x 應該沒有錯吧?! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.210.165.83
littleyinyo:嗯嗯,答案是對的!!謝謝你的解答^^ 06/02 00:34