看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《yaevna (yaevna)》之銘言: : Lex X have a logistic distrubution with p.d.f. : f(X)=[e^(-x)]/[1+e^(-x)]^2,-∞< x <∞ : A. Find the c.d.f. of X, say F(x) : B. Let Y=F(X). Find the p.d.f. of Y. : 麻煩大家了~謝謝 x e^(-u) A. F(x) = ∫ ----------------- du ( let 1 + e^(-u) = y ) -∞ [1 + e^(-u) ]^2 1+e^(-x) -1 = ∫ -------------- dy -∞ y^2 1 = ------------ 1 + e^(-x) -1 -1 B. F (y) = P(Y<=y) = P(F(X)<=y) = P(X <= F(y) ) = F (F(y)) = y Y X => Y ~ U ( 0 , 1 ) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.44.176.105
yaevna:謝謝你^^ 07/11 15:19
alienQbi:B.看不懂~~~~ 07/13 23:48
loveliver:用反函數的概念試看看 07/14 23:27