看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《chris1 (小刀)》之銘言: : Suppose that each individual has the utility function U1(I)=I when there is : no accident, but when there is an accident, an individual will feel that : his life is hopeless and his utility function becomes U0(I)=0, for any : I>=0 (so money is of no use to an individual having an accident). An : insurance company offers a contract: if a person pays the company QZ dollars : before he knows whether he has an accident, the person will receive Z dollars : from the company when he does not have an accident (so I=20+Z-QZ), but : receives 0 from the company if he has an accident (so I=15-QZ). Suppose : that each insurance company gets 0 expected profit. Suppose that each : individual can have negative income even after an accident, what will be : an individual's choice of Z? : 解答是寫 : Max EU=P*U0(15-QZ)+(1-P)U1(20+Z-QZ)=P*0+(1-P)(20+Z-QZ) : F.O.C : (1-P)(1-Q)=0 ∴Z=0 : 我不懂如果真的要極大化效用,Z=0怎麼會是最大的,應該是最小的吧,在這樣的 : 式子下,Z越大應該效用就越大呀,因為P、Q都介於0、1之間呀,請高手指教.. 我覺得是要考慮要不要投保的問題 如果不投保此人的效用為: (1-P)*I+P*0=(1-P)I 如果投保由F.O.C可知: P=1 (Q為投保的費率 保險公司不可能設為1) 所以這時的效用為: 0 因為投保的效用小於不投保的效用 0<(1-P)I 所以此人選擇不投保 Z為投保的保額為0 -- 我沒有你想像那麼堅強 我只是去假裝沒事 而你卻不知道 只有在去努力的愛著你時 我才是最勇敢的 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.133.97.34