作者youmehim (哩挖伊)
看板Grad-ProbAsk
標題Re: [理工] [工數]-高階ODE
時間Fri Aug 21 03:02:01 2009
1.
耍人呀 = = 係數應該沒y吧...
2 3
x y" - x(x+2)y' + (x+2)y = 2x
觀察得一齊性解為x
Let y = xu , y' = u + xu' , y" = 2u' + xu"
2 3
x (2u'+xu") - x(x+2)(u+xu') + (x+2)xu = 2x
除以x並且乘開
2 2 2
2xu' + x u" - xu - 2u - x u' - 2xu' + xu + 2u = 2x
2 2 2
x u" - x u' = 2x
Let p = u'
p' - p = 2
dp
---- = 2 + p
dx
dp
----- = dx
2+p
ln|p+2| = x + c*
x
p+2 = c1 e
x
p = u' = c1 e - 2
x
du = (c1 e - 2) dx
x
u = c1 e - 2x + c2
x 2
y = xu = c1 xe + c2 x - 2x
2.
t
2e
y" - y = ---------
t -t
e + e
先求齊性解
mt
Let y=e
2
m - 1 = 0 m = 1 or -1
t -t
yh = c1e + c2e
t t
2 e 1 1 e
yp = --------- --------- = (------- - -------) ---------
2 t -t D - 1 D + 1 t -t
D - 1 e + e e + e
2t
t 1 1 -t 1 e
= e --- --------- - e --- ---------
D t -t D t -t
e + e e + e
t t -t -t
t e -t ( e + e ) - e
= e ∫--------dt - e ∫-----------------dt
2t -2t
e + 1 1 + e
t t -t -t
Let x = e , dx = e dt , z = e , dz = -e dt
t 1 -t t 1
= e ∫-------dx - e ( ∫e dt - ∫------- dz )
2 2
x + 1 z + 1
t -1 t -t -1 -t
= e tan e - 1 + e tan e
t -t t -1 t -t -1 -t
y = yh + yp = c1e + c2e - 1 + e tan e + e tan e
3.
∫(xlnx - x)dx
2 1
Let u = x , du = 2xdx , v = lnx , dv = ---dx
x
1 1
= ---∫(v-1)du = ---[ u(v-1) - ∫udv ]
2 2
1 2 1 2 3 2
= ---[ x (lnx - 1) - ∫xdx ] = --- x lnx - --- x
2 2 4
4.
ix 1
Im[e ------------------ x]
2
D + 2(i+1)D + 2i
分母先提個2i 讓D的零次方項為1
ix
e 1
= Im[----- ------------------------- x]
2i i+1 1 2
1 + (----- D + ---- D )
i 2i
1 2
代入泰勒展開式 ------- = 1 - t + t - …
1 + t
由於只作用在x的一次方上 取到D的一次方就夠了
ix
e i+1
= Im[----- (1 - -----D)x]
2i i
2
所以剛剛分母那也可以直接把D 項去掉 答案亦同
5.
y" + 4y = cos2x
mx
Let y = e
2
m + 4 = 0 , m = ±2i
yh = c1 cos2x + c2 sin2x
1
yp = ------- cos 2x
2
D + 4
1 2ix
= Re [------- e ]
2
D + 4
1 1 1 2ix
= Re [---- (------ - ------)e ]
4i D-2i D+2i
1 2ix -2ix 4ix
= --- Re [-i(xe - e ∫e dx )]
4
4ix
1 2ix -2ix e
= --- Re [-i(xe - e -------)]
4 4i
1 1
= --- Re [-i x(cos2x + i sin2x) + ---(cos2x + i sin2x)]
4 4
1 1
= --- (xsin2x + ---cos2x)
4 4
1
y = yh + yp = c1 cos2x + c2 sin2x + ---xsin2x
4
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 58.114.111.147
推 mdpming:感謝妳~~~~ 08/21 09:21
推 whereisjwill:猛 08/22 13:10