看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《magiciano (magiciano)》之銘言: : 求∫G(x,y)ds : G(x,y)=x^2/y^3 : 2y=3x^(2/3) : < < : 1 = x = 8 : 我算到ds= √1+x^(-1/3) dx : 然後接下來的積分就卡住了 : 希望各位幫幫忙~ --- 2y = 3x^(2/3) → y' = x^(-1/3) ds = √[1+ (y')^2] dx = √[1+ x^(-2/3)] dx 8 then ∫ x^2/y^3 ds = 8/27∫ √[1+ x^(-2/3)] dx c 1 (set x^(-1/3) = tanθ → -1/3*[x^(-1/3)]^4 dx = (secθ)^2 dθ ) = -8/9∫ secθ * (secθ)^2 / (tanθ)^4 dθ θ = -8/9∫ (sinθ)^(-4) d(sinθ) θ = 8/27 * (sinθ)^(-3) | θ x=8 = 8/27 * [x+x^(1/3)]*√[1+ x^(-2/3)] | x=1 = 8/27 *( 5√5 - 2√2 ) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.141.151
magiciano:感謝~~ ^^ 09/01 13:06