看板 Grad-ProbAsk 關於我們 聯絡資訊
3. 2 y" = y' + y'y , y(0) = 1 , y'(0) = -2 d dy dy d dy dp Let p = y' , y" = ---- ---- = ---- ---- ---- = p ---- dx dx dx dy dx dy 2 pp' = p + py (從這邊開始 '表示對y微分) p(p' - p - y) = 0 (i) p = 0 , y = c1 = 1 但不符初始條件 y'(0) = -2 (不合) (ii) p' - p = y -y I= exp∫-dy = e -y -y -y Ip = ∫ye dy = -ye - e + c2 1 -y -y y p = y' = ---(-ye - e + c2) = -y - 1 + c2 e I 將初始條件 y(0) = 1 , y'(0) = -2 代入 -2 = -1 - 1 + c2 得 c2 = 0 y' = -y-1 dy ------- = -dx y + 1 ln|y+1| = -x + c3* -x y = c3 e - 1 將初始條件 y(0) = 1 代入 1 = c3 - 1 得c3 = 2 -x 解為 y = 2e - 1 5. 2 yy" = 2y' - 2y' , y(0) = 1 , y'(0) = 2 dp Let p = y' , y" = p---- dy 2 ypp' = 2p - 2p (從這邊開始 '表示對y微分) p(yp' - 2p + 2) = 0 (i) p = 0 , y = c1 = 1 但不符合初始條件 y'(0) = 2 (不合) (ii) yp' - 2p + 2 = 0 2 2 p' - --- p = - --- y y 2 -2 I = exp∫- --- dy = y y 2 -2 -3 -2 Ip = ∫- --- y dy = -2∫y dy = y + c2 y 2 p = y' = 1 + c2 y 將初始條件 y(0) = 1 , y'(0) = 2 代入 2 = 1 + c2 得 c2 = 1 2 y' = 1 + y dy -------- = dx 2 1 + y -1 tan y = x + c3 將初始條件 y(0) = 1 代入 π 得 --- = c3 4 π 解為 y = tan(x + ---) 4 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 58.114.111.147
mdpming:...@@太利害了 09/04 00:24
CRAZYAWIND:囧 我第三題只算到P = 後面那一串卡在沒想到要先代初始 09/04 00:28
kusorz:原來要先帶條件阿 我想說最後不知道怎麼積 09/04 00:28
CRAZYAWIND:多學到一招可以用的了= = 09/04 00:30
hihaka2001:哈真的學到新招 09/04 10:19
※ 編輯: youmehim 來自: 218.173.129.116 (09/13 02:24)