看板 Grad-ProbAsk 關於我們 聯絡資訊
(a)If complex function f(z) has a simple pole at z=a on the real axis please show the following theorem : lim ∫f(z)dz = πi Resf(a) r→0 C2 ,where Resf(a) is the residue of f(z) at z=a , the path C2 is C2: z=a+re^(iθ) , 0≦ θ≦π (b)Integrate the following complex function counterclockwise around C. cosz ── , n=1,2,......, C: |z|=1 z^n 拜託各位大大了 這一題是98成大工數 謝謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.113.57.95 ※ 編輯: NeeedFoood 來自: 59.113.57.95 (09/05 14:40)
SONGya168:格式請修正 09/05 16:39