看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《mailmovieb ( )》之銘言: : 我想問說如果要證明 : A是n階方陣,n>1 : 1.rank(A)=n if and only if rank(adj(A))=n : 2.rank(A)=n-1 if and only if rank(adj(A))=1 : 3.rank(A)<n-1 if and only if adj(A)=0 : 請問該如何證明? pf: 1. A:nonsingular <=> det(A) != 0 <=> det(adj(A)) = det(A)^(n-1) !=0 <=> adj(A): nonsingular <=> rank(adj(A)) = n 3. Suppose Aij is the cofactor of A, for any i,j, since Aij is the determinant of a n-1 * n-1 submatrix S, then rank(A) < n-1 <=> S is singular, for all S <=> det(S) = 0, for all S <=> all entries of adj(A) are equal to zero <=> adj(A) = 0 <=> rank(adj(A)) = 0 2. (=>) Since det(A) = 0 => A(adj(A)) = 0 => R(adj(A)) is contained in N(A) => rank(adj(A)) ≦ nullity(A) = n - rank(A) = 1 since rank(A)=n-1, applying 3 we can get rank(adj(A)) != 0, therefore rank(adj(A)) = 1 (<=) we can know that rank(A) ≧ n-1 but is not equal to n (by 1 and 3), rank(A) can only be n-1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.28.201
mailmovieb:謝謝你!! 09/09 16:04