看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《nowar100 (拋磚引玉)》之銘言: : 題目: : n : Let A1 be the matrix representation of a linear transformation L from R to : n n : R with respect to the basis B1. Let B2 be another basis of R , and let P be : the transition matrix corresponding to the change of basis from B1 to B2, : What is the matrix representation of L with respect to the basis B2 ? : 我的想法: : B2 B1 -1 : [L] = [I] [L] [I] = P A1 P : B2 B1 B1 B2 : -1 : 可是解答是 P A1 P ,我不懂我錯在哪,麻煩大家了 令U為B1的基底, V為B2的基底 令U為B1的基底, V為B2的基底 -1 x= U x =V x => x = U V x B1 B2 B1 B2 -1 令P=U V => U P= V P為B1->B2的基底轉換矩陣 -1 L(x)=y L U x =U y => U L U x = y B1 B1 B1 B1 -1 -1 => U L U= [L] = A1 同理 V L V= [L] B1 B2 -1 -1 => L= U [L] U = V [L] V B1 B2 -1 -1 -1 -1 => [L] =V U [L] U V = P [L] P =P A1 P B2 B1 B1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.192.99.249
gensim:P=(U^-1)V 變成B2->B1...... 09/10 23:57
gogogoclark:P為B2->B1的座標轉換矩陣也可為B1->B2的基底轉換矩陣 09/11 00:48
gensim:....有可以這樣亂轉的嗎... 09/12 00:06