看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《HP0 (cksh)》之銘言: : B是任何3乘2的實數矩陣,B轉置用B'表示,我想證明以下這個矩陣可逆 : [1 0 0 ] : [0 1 0 B ] : [0 0 1 ] : [ -1 0] : [ B' 0 -1] : 請問要如何下手? [I -B] = [I 0][I -B ] [B' I] [B' I][0 I+B'B] => det[I B] = det[I -B] * (-1)^2 [B' -I] [B' I] = det[I 0] det[I -B ] [B' I] [0 I+B'B] = [det(I)det(I)][det(I)det(I+B'B)] = det(I+B'B) claim: I+B'B is positive definite pf: For any eigenvalue λ of I+B'B, let x be an eigenvector of I+B'B w.r.t. λ => (I + B'B)x = λx => x + B'Bx = λx => B'Bx = (λ-1)x Since B'B is positive semi-definite, all eigenvalues of B'B are non-negative, i.e., λ-1>=0 => λ>=1>0. Therefore I+B'B is positive definite, which implies that det(I+B'B)>0. Hence, [I B] is invertible. [B' -I] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.28.201
HP0:謝謝你!! 09/23 11:30