看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《cmkv7rdf (Why so serious?)》之銘言: : 1.let S ={(x1,x2,x3)′│x1=x2} . Show that S is a subspace of R^3. (0,0,0)' in R^3 , so S is nonempty for any a,b in R , and (x1,x2,x3)' (y1,y2,y3)' in S then a(x1,x2,x3)' + b(y1,y2,y3)' = (ax1,ax2,ax3)' + (by1,by2,by3)' = (ax1+by1,ax2+by2,ax3+by3)' since x1=x2 and y1=y2 , so ax1+by1 =ax2+by2 and hence a(x1,x2,x3)' + b(y1,y2,y3)' in S i.e. S is a subspace of R^3 : 2.prove the following rules for matrix multiplication: : (a) (AB)C=A(BC) : (b) A(B+C)=AB+AC : (c) (AB) = B A : 3.let A=│ a11 a12 │ ,show that if d=a11a22-a21a12≠0, : │ a21 a22 │ : Then A^-1= 1/d │ a22 -a12 │ : │ -a21 a11 │ : 回答出來一題給100P -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.195.16.32 ※ 編輯: smartlwj 來自: 123.195.16.32 (09/24 19:36)
cmkv7rdf:感恩!!隨後奉上100P 09/24 19:38