推 cmkv7rdf:感恩!!隨後奉上100P 09/24 19:38
※ 引述《cmkv7rdf (Why so serious?)》之銘言:
: 1.let S ={(x1,x2,x3)′│x1=x2} . Show that S is a subspace of R^3.
(0,0,0)' in R^3 , so S is nonempty
for any a,b in R , and (x1,x2,x3)' (y1,y2,y3)' in S
then
a(x1,x2,x3)' + b(y1,y2,y3)'
= (ax1,ax2,ax3)' + (by1,by2,by3)'
= (ax1+by1,ax2+by2,ax3+by3)'
since x1=x2 and y1=y2 , so ax1+by1 =ax2+by2
and hence a(x1,x2,x3)' + b(y1,y2,y3)' in S
i.e. S is a subspace of R^3
: 2.prove the following rules for matrix multiplication:
: (a) (AB)C=A(BC)
: (b) A(B+C)=AB+AC
: (c) (AB) = B A
: 3.let A=│ a11 a12 │ ,show that if d=a11a22-a21a12≠0,
: │ a21 a22 │
: Then A^-1= 1/d │ a22 -a12 │
: │ -a21 a11 │
: 回答出來一題給100P
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.195.16.32
※ 編輯: smartlwj 來自: 123.195.16.32 (09/24 19:36)