看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《cmkv7rdf (Why so serious?)》之銘言: : 1.let S ={(x1,x2,x3)′│x1=x2} . Show that S is a subspace of R^3. : 2.prove the following rules for matrix multiplication: : (a) (AB)C=A(BC) : (b) A(B+C)=AB+AC : (c) (AB) = B A (a) assume that A:mxn B:nxp C:pxq matrix n n p (A(BC))_ij = sigma a_ik(BC)_kj = sigma a_ik[sigma b_kl c_ij] k=1 k=1 l=1 n p p n = sigma sigma a_ik b_kl c_lj = sigma sigma a_ik b_kl c_lj k=1 l=1 l=1 k=1 p n p = sigma [sigma a_ik b_kl]c_ij = sigma (AB)_il c_lj l=1 k=1 l=1 =((AB)C)_ij i=1~m j=1~q (b)(c)用同樣的方式可以得到結論 : 3.let A=│ a11 a12 │ ,show that if d=a11a22-a21a12≠0, : │ a21 a22 │ : Then A^-1= 1/d │ a22 -a12 │ : │ -a21 a11 │ : 回答出來一題給100P use A^(-1) = adj(A)/det(A) adj(A) = [ a22 -a12] [-a21 a11] since d = a11a22-a21a12 ≠0 then A^(-1) = adj(A)/det(A) = (1/d)[ a22 -a12] [-a21 a11] 這應該是課本上的定理或習題 自己翻書看看 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.195.16.32