作者shareing ( )
看板Grad-ProbAsk
標題[微積] 極限
時間Mon Oct 5 18:01:40 2009
※ [本文轉錄自 Math 看板]
作者: shareing ( ) 看板: Math
標題: [微積] 極限
時間: Mon Oct 5 18:00:09 2009
Assume that the limit La = lim (a^x-1)/x
x->0
exists and that lim a(x) = 1 for all a > 0
x->0
Prove that Lab = La + Lb for a,b > 0
Hint: (ab)^x - 1 = a^x(b^x-1)+(a^x-1)
做法:
Lab = La + Lb
lim [(ab)^x-1]/x
x->0
= lim a^x(b^x-1)/x+lim (a^x-1)/x
x->0 x->0
= lim (a^x-1)/x + lim (a^x-1)/x
x->0 x->0
我只會做到這邊
請高手指導一下
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.115.204.13
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.115.204.13
→ a016258:第三行 不是就可以寫結果了嗎??? 10/05 18:10
推 zeowo:標題錯誤,請按大寫T依版規修改~ 10/05 18:13