→ wade0222:感謝!!原來是我們導師筆記抄錯 謝謝 10/10 18:20
※ 引述《wade0222 (CALL ME WADE)》之銘言:
: 題目:解(1-xy+(xy)^2)dx+(yx^3-x^2)dy=0
: 我的算法是
: 另v=xy so y'=(xdv-vdx)/x^2
^^^^^^^^^^^^^^^^
應該是 dy = (xdv-vdx)/x^2
: 帶入原式
: (1-v+v^2)+x^2(v-1)(xdv-vdx)/x^2=0
^^^^^^^^^
少乘上 dx
: ==>(1-v+v^2)/(v-1)+(xdv-vdx)=0
: 算到這裡我就卡住了
: 看了詳解的算法也不懂!!詳解直接下去就變成
: dx+x(v-1)dv=0 <==變成這樣接下去我也會= =但是不知道怎樣變成這樣
: 最後的Ans:lnx+(xy)^2/2-xy=c
: 請各位幫幫我吧
(1-v+v^2)dx + (v-1)(xdv-vdx)=0
→ dx - vdx + v^2dx + ( xvdv - xdv - v^2dx + vdx ) = 0
→ dx + xvdv - xdv = 0
→ -1/x dx = (v-1)dv
→ -ln|x| = v^2/2 - v + C
or -ln|x| = (xy)^2/2 - xy + C
---
也能這樣做:
[1-xy+(xy)^2]dx + [yx^3-x^2]dy = 0
→ dx - xydx + (xy)^2dx + x^3ydy - x^2dy = 0
→ dx - x(ydx + xdy) + x^2y(ydx + xdy) = 0
→ dx - xd(xy) + x^2yd(xy) = 0
→ (1/x)dx + (xy-1)d(xy) = 0
→ ln|x| + (xy)^2/2 - (xy) = C
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.141.151