看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《kagato (包)》之銘言: : [xy(x^2 - y^2)^(1/2) + x]y'=y - x^2 *(x^2 - y^2)^(1/2) : 拜託版上高手了@@ --- [xy√(x^2 - y^2) + x]dy = [y - x^2√(x^2 - y^2)]dx → x√(x^2 - y^2) * [ydy + xdx] + [xdy - ydx] = 0 → (x/2)√(x^2 - y^2) *d(x^2 + y^2) + x^2d(y/x) = 0 → (1/2)√[1 - (y/x)^2] *d(x^2 + y^2) + d(y/x) = 0 1 → _______________ d(y/x) = (-1/2) d(x^2 + y^2) √[1 - (y/x)^2] -1 → sin (y/x) = -(x^2 + y^2)/2 + C -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.141.151 ※ 編輯: doom8199 來自: 140.113.141.151 (10/12 18:48)
doom8199:回太晚了 OTZ 10/12 18:49
kagato:感激不盡 10/12 18:54