推 mdpming:推一個` 10/15 09:45
※ 引述《mdpming (★pigming★)》之銘言:
: y'' + Qy = 0 , -L < x < L , 且 y(-L) = y(L) , y'(-L) = y'(L)
: = =
: 求 特徵值 雨 特徵函數
: ^^^^^^^^^^^^^^^^^^^^^^
: 這我會
: 但是..
: 並判斷特徵函數是否正交..
: ^^^^^^^^^^^^^^^^^^^^^^^
: 我不知如何下手 有5個CASE..
: http://www.wretch.cc/album/show.php?i=pigming&b=23&f=1508326173&p=0
: 這是解答 詳解..
: 請問這...該怎麼解 能放掉嗎...
: S-L 已經困擾我一天了..還是沒頭緒@@
y'' + Qy = 0 -L <= x <= L , 且 y(-L) = y(L) , y'(-L) = y'(L)
let λm,λn is corresponding eigenvalue
ym,yn is corresponding eigenfunction
and
y''m+λmym=0 ...(1)
y''n+λnyn=0 ...(2)
(1)*yn-(2)ym
yny''m-ymy''n+(λm-λn)ymyn=0
d(ynym'-ymy'n)+(λm-λn)ymyn=0
L L
(ynym'-ymy'n)|+(λm-λn)∫ymyndx=0
-L -L
∵ym(-L) = ym(L) , ym'(-L) = ym'(L)
yn(-L) = yn(L) , yn'(-L) = yn'(L)
L
∴(λm-λn)∫ymyndx=0
-L
∵λm≠λn
L
∴∫ymyndx=0
-L
imply <ym,yn>=0 at -L <= x <= L with weight function 1
--
路遙知馬力,臉書見人心
http://www.facebook.com/home.php#/iyen.li
---> FB Online XD
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.214.165