※ 引述《sususki (小雨)》之銘言:
: 請教各位工數大大..有個問題想不通
: 我是看周易的工數(p 1-73)
: 題目是:y'=y^2-xy+1
: 首先令通解 y=x+v ,代入ODE後 ==>1+v'=(x+v)^2-x(x+v)+1
: 左邊的 1+v'是怎麼來的??
y'=P(x)y^2+Q(x)y+R(x) ...(1)
if find the yp s.t yp'=y'=P(x)yp^2+Q(x)yp+R(x)
and we can let y=yp+v
y'=yp'+v'
yp'+v'=P(yp^2+v^2+2ypv)+Q(yp+v)+R
--->v'=Pv^2+(2Pyp+Q)v
--->v'-(2Pyp+Q)v=Pv^2 ....Bernoulli ode
let z=1/v z'=-v^-2v'
--->z'+(2Pyp+Q)z=-P .......1st linear ode
imply we can let y=yp+1/z ,change (1) to 1st linear ode
or y=yp+v ,change (1) to Bernoulli ode
--
為者常成.行者常至
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.214.165
※ 編輯: iyenn 來自: 123.193.214.165 (10/21 13:42)