推 pttjohn:正解! 10/27 15:25
※ 引述《pushfish (聽天使在呢喃)》之銘言:
: ※ 引述《jackoyu (偉下列資料正確填寫並回숩》之銘言:
: : An actuary determines that the numbers of major earthquake in certain area
: : follows Poisson distribution with mean 2 per year.
: : 1. whart is the probability that the inter-arrival time of two major
: : earthquakes is less than three months?
: : 2. what is the probability that there will be no major earthquakes in a year?
: : 3. counting the number of no major earthquake years in the next 10 years,
: : what is the probability that the count is two.
: : 4. counting the number of no major earthquake years in the next 100 years,
: : what is the probability that the count is over 15.
: : 題目如上述,是否可請各位大大幫忙解題,小弟一直苦無頭緒,也不知如何下筆。
: : 看起來是卜瓦松過程,但還是不知要如何解題,也不太清楚題意,是否可以請各位
: : 賜教,謝謝!!
感謝pttjohn指正
1.第一題是問兩個地震的間隔時間小於三個月
令Y為兩地個之間隔時間 Y~EXP(入=2或B=1/2)
.25
P(Y<3/12)= S 2*e^-2xdx= 1-e^-0.5
0
2.一年內無地震
令X為1年地震個數 X~poi(入=2)
P(X=0)= e^-2
3. 題意為在十年內沒有發生大地震的次數為兩年
沒有大地震為e^-2
令W為10年內發生大地震次數
P(W=2)=10C2 (e^-2)^2 (1-e^-2)^8
4. 100年內超過15次沒有大地震
E(W)=100*e^-2 V(W)=E(W)*(1-e^-2)
接著藉由轉成常態分配去算
P(W>15)===P(W>15.5) [連續校正]
P(Z>15.5-E(W) / S(W) )即為所求
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.39.186.26