看板 Grad-ProbAsk 關於我們 聯絡資訊
2 x y" + xy' + 9λy = 0 t Let x = e , t = lnx (x>0) d dt d -1 d --- = --- --- = x D ( D為 --- ) dx dx dt dt 2 d d -1 -2 -2 2 -2 --- = --- (x D) = - x D + x D = x D(D-1) 2 dx dx 帶回原式得 2 [ D(D-1) + D + 9λ ] y = [ D + 9λ ] y = 0 2 mt 令 λ = k , y = e 2 2 mt [ D + 9k ] e = 0 2 2 m + (3k) = 0 m = ±3ki y = c1 cos(3kt) + c2 sin(3kt) = c1 cos(3klnx) + c2 sin(3klnx) 由 y'(1) = 0 知 -1 -1      | - 3k x c1 sin(3klnx) + 3k x c2 cos(3klnx)| = 3k c2 = 0                      |x=1 因k≠0 , 得c2 = 0 由 y(e) = 0 知 c1 cos(3k) = 0 因c1≠0 (y≠0) , 得 3k = (n-1/2)π 2 2n-1 2 eigenvalues λn= kn = (------π) 6 eigenfunctions yn = bn cos[(n-1/2)πlnx] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.173.128.217