看板 Grad-ProbAsk 關於我們 聯絡資訊
2 1.若函數g1=a0 g2=b0+b1x g3=c0+c1x+c2x 在-1<= x<=1之區間內形成單位正交 函數 請求g1 g2 g3 1 0.5 0.5 0.5 2 答案:g1=------- g2=1.5 x g3=(5/8) -(45/8) x 2^0.5 2.define the function <p(x),g(x)> = S xp(x)g(x)dx (S為積分 範圍從0~1) is an inner product on vector space P2. Aplly the Gram-Schmidt process to the 2 basis B{1, x, x }on[0,1]to obtain an orthonormal basis 0.5 0.5 2 6 3 答案 u1=2 u2=4(x-2/3) u3=600 (x - ---x + ---- ) 5 10 3.find fouriesof f(x)=xsinx n+1 1 ∞ 2(-1) f(x)=1 - ---cosx +Σ ------ cosnx 不會算係數 2 n=2 2 n -1 4.define f(t)=t 0<=t<=1 f(t)=0 -1<=t<=0 and g(t)=-α1+α2t where α1 and α2 are costants. determine the values of α1 and α2 so that 2 ∫[f(t)-g(t)] dt is minimized ( 範圍從-1~1) 答案 α1 = -1/4 α2=1/2 感謝各位 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.178.201 ※ 編輯: winer8 來自: 114.37.178.201 (11/07 22:04)