看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《gn00618777 (123)》之銘言: : 請教一下 : if a matrix A has the property that A^k=0 for some postive integer : show A-I is invertible? let Ax=qx q is eigenvalue of A and x is corresponding eigenvector A^kx=q^kx=0 x=/=0 , s.t. q^k=0 =>q=0 all eigenvalue is equal to zero. s.t. A-I have nonzero eingenvalue and det(A-I)=/=0 ->A-I is invertible -- 為者常成.行者常至 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.214.165
gn00618777:多謝! 11/13 23:49