看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《aacvbn ( 姿勢+)》之銘言: : -> : for a saclar function f and a vector G , prove that : -> -> -> : ▽╳(fG ) = f▽╳G + (▽f) ╳ G in Cartesian coordinates. : 謝謝! 勤勞點......就能K.O.這類的題目了= = ▽╳(fG ) = f▽╳G + (▽f) ╳ G let f=g(x,y,z) G=Ai+Bj+Ck A,B,C is x,y,z function ▽╳(fG=Agi+Bgj+Cgk)=| i j k | | | | @ @ @ | | --- --- ----| | @x @y @z | | | | Ag Bg Cg | =i{(Cyg+Cgy)-(Bzg+Bgz)}+ j{(Azg+Agz)-(Cxg+Cgx)}+ k{(Bxg+Bgx)-(Ayg+Agy)} ...(1) f▽╳G =gi{Cy-Bz}+gj{Az-Cx}+gk{Bx-Ay} ....(2) (▽f) ╳ G={gxi+gyj+gzk}╳ {Ai+Bj+Ck} =i{Cgy-Bgz}+j{Agz-Cgx}+k{Bgx-Agy} ....(3) (2)+(3)=(1) ▽╳(fG ) = f▽╳G + (▽f) ╳ G Q.E.D. -- 為者常成.行者常至 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.214.165
aacvbn:真的拿證明題束手無側呀~~ 太感謝你了!! 11/15 20:19