看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《jackoyu (偉下列資料正確填寫並回숩》之銘言: : 1. : N ~ Poisson(λ=5) : Xi's ~Exp(λ=3) : S=X1+.....+XN : Xi, N 獨立 : 求 the monment generating function of S. : 拜託強者,幫忙解答一下疑問,謝謝!! 雙重期望值定理+指數分配可加性 Ms(t)=E(e^st)=E[E(e^t*ΣXi l N)]=E[E(e^X1t+.....+e^Xnt l N )] =E[(1-1/3*t)^-n)] =(1-1/3*t)^-n)*e^-5*5^n/n! n=0,1,2...... : 2. : You suspect one of the die have been modified. You roll the suspected : die 50 times. The observed distribution is provided below, : Value(x) 1 2 3 4 5 6 : observed 13 12 10 8 4 3 : let p=P(X=1/6),test H0:p<= 1/6 H1:p> 1/6 : (a) find the exact p-value : (b) Use normal approximayion to find the p-value : (c) Find a rejection region for test at α=0.05,and the power function. : 這題要怎麼做呢?是要用齊一性檢定嗎? 還是 ..... 謝謝!! A. X bar=2.74 EX=3.5 P-value=(x<=2.74) B. X bar=2.74 E(Xbar) =3.5 V(Xbar)=6^2-1 / 12= 35/12*1/50 P(X<=2.74)=P(X<2.74+0.5) 我的神兵不見了 沒法算T_T C. k=3.5-Z(0.025)*35/12*1/50 =3.5-1.96*35/12*1/50 power=(X bar<=k l Ha 為真[p=p']) 有錯請指正 謝謝~~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.39.179.195