看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《winer8 (快來明星3 缺1 )》之銘言: : 1.solve the partial differential equation 2Ux-3Uy+2U=2x : inttial condition U(x,y)=x^2 for the line 2y+x=0 : y+0.5x 1 2 1 : ANS:U=e [---(2y+3x) - ----(2y+3x)+1 ]+x-1 : 4 2 --- 令此通解為 Z(u,x,y) = 0 → ┌ Zx + Zu*Ux = 0        └ Zy + Zu*Uy = 0 → ┌ Ux = - Zx / Zu 帶回原 P.D.E.         └ Uy = - Zy / Zu -2*Zx + 3Zy + (2U-2x)Zu = 0 dx dy dU → ____ = ____ = _____ -2 3 2U-2x → ┌ 3dx + 2dy = 0    └ U' + U = x → ┌ 3x + 2y = c1    └ U = (x-1) + c2*e^(-x) 所以該 PDE 通解為 U(x,y) = (x-1) + φ(3x + 2y)*e^(-x) 其中 φ(r) is any function of r 由 U(x,y)=x^2 for the line 2y+x=0 可知: x^2 = (x-1) + φ(3x-x)*e^(-x) → φ(2x) = (x^2-x+1)*e^x → φ(x) = [ (x/2)^2 - (x/2) + 1]*e^(x/2) 因此 U(x,y) = (x-1) + φ(3x + 2y)*e^(-x) 3x + 2y 3x + 2y (3x + 2y)/2 -x = (x-1) + [ (_______)^2 - (_______) + 1] * e * e 2 2 3x + 2y 3x + 2y (x/2 + y) = (x-1) + [ (_______)^2 - (_______) + 1] * e 2 2 : 2.Utt=4Uxx -∞<x<∞ t>=0 : U(x,0)=0 Ut(x,0)=δ(x) solve bu fourier transform : ANS:U=0.25[H(x+2t)-H(x-2t)]  翻以前的文章你應該就會做了 ==a : 3.solve : dx dy dz : -----------=----------- =--------- : x^2+y^2-yz -x^2-y^2+xz (x-y)z : ANS: x^2+y^2=c1z^2 與x+y-z=c2 2曲面交線 同 1. --- 程式好多QQ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.141.151 ※ 編輯: doom8199 來自: 140.113.141.151 (11/30 23:00)
iyenn:推程式好多Q_q 11/30 23:45
doom8199:好險學長是好人,不然我又要看日出了 ╰(〒皿〒)╯ 12/01 00:01
winer8:感謝樓上二位囉!!! 12/01 00:12
iyenn:反正你看習慣了(茶 12/01 00:26