作者windysoul (windysoul)
看板Grad-ProbAsk
標題Re: [理工] [線代]-行列式證明題
時間Thu Dec 3 17:18:38 2009
※ 引述《ruby791104 (阿年:))》之銘言:
: 1.Use mathematical induction to prove that if A is an (n+1) ×(n+1) matrix
: with two identical rows then det(A) = 0
For n
when n=2
┌ a b ┐
A=│ │ then det(A)=ab-ba=0
└ a b ┘
set for k=n is OK
now that k=n+1,A:(n+1)×(n+1)
and for A, r row and s row is same
because n>=3 choose i!=r & i!=s
n+1 i+j
det(A)=Σ (-1) aij*det(Aij)
j=1
det(Aij):n×n
det(Aij)=0
so for k=n is OK
k=n+1 is OK
@@ 其實我是想打中文的XDD
不過看到題目用英文問 就直接打英文了
然後 aij 的 ij 是下標 不過我不會用bbs打下標
同理 Aij 的ij也是下標
然後i+j是(-1)的次方
: 2.Let A and B be 2 ×2 matrices.
: (a)Does det(A+B) = det(A) + det(B)?
: (b)Does det(AB) = det(A)det(B)?
: (c)Does det(AB) = det(BA)?
: Justify answers.
: 3.Let A and B be 2 ×2 matrices and let
: ┌ ┐ ┌ ┐ ┌ ┐
: │a11 a12│ │b11 b12│ │0 α│
: C = │ │ D = │ │ E = │ │
: │b21 b22│ │a21 a22│ │β 0│
: └ ┘ └ ┘ └ ┘
: (a)Show that det(A+B) = det(A) + det(B) + det(C) + det(D)
: (b)Show that if B = EA then det(A+B) = det(A) + det(B)
: 以上,麻煩好心的大大!(鞠躬
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.160.221.247
推 ruby791104:windy大:我也不會打下標呢^^謝謝你的幫忙喔,以後也請 12/03 23:48
→ ruby791104:多多指教喔! 12/03 23:48