作者winer8 (快來明星3 缺1 )
看板Grad-ProbAsk
標題[理工] [線代]-線性映射
時間Wed Dec 9 01:33:15 2009
1.let T be a linear operator space V of dinension 3 ,and let x be a vector
in V . If p denotes the smallest positive integer such that
3 2
(T-2I) (x)=0 and (T-2I) (x) (T-2I)(x) ,x ar independent vectors,then
What is the matrix presentation of T by the ordered set
2
{(T-2I) (x), (T-2I)(x), x}?
ans: 2 1 0
Ta=[0 2 1 ]
0 0 2
這題我連題目再說什麼都不懂= = 拜託解釋的詳細點 那個p 到底代表什麼?
2.Let A be a real symmetric positive definite n*n matrix
prove that the leading principle submatrices A1 A2.....An of A are all
positive definite(A leading principle submatrix Ar is formed by deleting
the last n-r rows and columns of A)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.37.139.185
→ itsforte:1.就是喬丹正則式 12/09 08:05
→ winer8:不太懂@@ 懇請樓上交交我怎麼解 12/09 11:52
→ winer8:拜託各位高手教一下我T.T 12/09 22:13
→ comerjoy:只是告知P=3,在做映射時會用到(T-2I)^3=0,所以才強調 12/11 02:12
→ comerjoy:基底以經給你了,在所給定的基底上找代表矩陣 12/11 02:17