看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《GI9 ( )》之銘言: : Let A and B be two nxn matrices over C . Suppose that the 2nx2n matrix : [A 0] [B 0] : [0 A] is similar to [0 B] : Show that A is similar to B 我有問題... M=[A 0] N=[B 0] [0 A] [0 B] A特徵值:入a1 入a2...      B特徵植:入b1 入b2... M特徵值:入a1 入a1 入a2 入a2... N特徵值:入b1 入b1 入b2 入b2... A B不相似 M N光是特徵值就不一樣了 怎麼可能相似 ~_~? -- ╔╦══╦═╤══╦══╦═│═╦═══╦══╦═╦═╤═╤═╗ ║╙ ╙─┐ ║ │ ╙─itsforte ╠─ ──┬ ┼ ╙┐ ║ └─ │ ║ ║╓ │ ╓ └──┼─ │ ╓┘╓─一詞扶梯 ╚╩ ─ ╩═└─═╧═ ─ ╩┴──╩══╧═╧╝ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.139.124 ※ 編輯: itsforte 來自: 140.113.139.124 (12/17 18:08)
polomoss:這是什麼所的線代阿~~我都不會@@ 12/17 18:23
iyenn:你不能先假設ka1 kb1不同呀,如果相同就ok不是? 12/17 18:35
GI9:那你可以舉得出M、N相似 結果A、B不相似的例子嗎? 12/17 21:01
kkman0120:這數延所的嗎? 12/18 01:05
itsforte:我腦包看錯題目了 = =|| 12/18 13:18
assume A= p J p^(-1), B= q K q^(-1), which A is NOT similar to B [A 0] = [p J p^(-1) 0 ] = [p 0] [J 0] [p^(-1) 0 ] [0 A] [ 0 p J p^(-1)] [0 p] [0 J] [0 p^(-1)] = P [J 0] P^(-1) [0 J] [B 0] = [q K q^(-1) 0 ] = [q 0] [K 0] [q^(-1) 0 ] [0 B] [ 0 q K q^(-1)] [0 q] [0 K] [0 q^(-1)] = Q [K 0] Q^(-1) [0 K] => [A 0] is not similar to [B 0] [0 A] [0 B] <=> [A 0] is similar to [B 0] => A is similar to B [0 A] [0 B] ※ 編輯: itsforte 來自: 140.113.139.124 (12/18 13:49)