推 chenbojyh:[v1]I,[v2]I,..,[vn]I就是以I作基底來表示v,v2,v3...,vn 01/03 22:21
1.let B be the basis of R^n consisting of the vectors v,v2,v3...,vn , and
let I be some other basis of R^n , Is [v1]I,[v2]I,...,[vn]I a basis of R^n
﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏
as well? explain. 上式I為下標
請問這題如何解呢?
不知道[v1]I,[v2]I,...,[vn]I 這所代表的意思!?
2.Let Pn be the space of polynomials of degree at most n. Let the linear map
L:P2 --> P1 be defined sa (Lp)(t) = (p(t)-p(0))/t . Find the matrix
representation f L with respect to the bases {1+t , t+t^2 , 1+t^2} for P2
and {t , 1+t } for P1
請問這題可以直接映射解出來嗎?
例如 先同構 再 A[p2] = [p1] ...
-1
就是不用 A = U LB 來解
謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.41.77.113