請問各位大大們三題有關根軌跡設計的問題
第一題:
畫出系統特徵方程式的跟軌跡,其中
L(s) = (s+1) / [s(s+1)(s+2)]
然後計算跟軌跡的增益使共軛複數極點有阻尼比0.5
第二題:
數值控制工具機的定位伺服機構有正規化和縮放後的轉移函數
G(s) = 1/ [s(s+1)]
在單位負回授,若閉迴路極點位於 s = -1±j√3 處,系統就可符合性能規格。
(a)證明只用比例控制 D(s) = Kp 時,不可能符合規定。
(b)設計能符合規格的超前補償 D(s) = K[(s+z)/(s+p)]
第三題
假設單位負回授的閉迴路系統有前饋轉移函數
G(s) = 1 / [s(s+2)]
設計落後補償使得閉迴路系統的主極點位於 s = -1±j 處並且對單位斜坡
輸入的穩態誤差低於0.2
謝謝~
不好意思,我忘記要放答案
第一題答案
This must be a typo! The roots at -1 cancel and the second order system
will have damping of 0.5 at K = 4. A more interesting case occurs for
num = s+3. In this case, the roots are at ..42+j.7 and the gain is 0.47
第二題答案
(a) With proportional control, the poles have real part at s = ..5.
(b) To design a lead, we select the pole to be at p = .10 and compute
the zero and gain to be z = .3, k = 12.
第三題答案
The poles can be put in the desired location with proportional control
alone, with a gain of kp = 2 resulting in a Kv = 1. To get a Kv = 5, we
add a compensation with zero at 0.1 and a pole at 0.02.
D(s) = 2[(s + 0.1)/(s+ 0.02)]
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 203.73.6.207
※ 編輯: luckznn 來自: 203.73.6.207 (01/09 14:28)
推 pimday1125:有答案嗎 (1)k=4 (3)補償器為(s+0.05)/(s+0.01),K=2 01/09 14:45
※ 編輯: luckznn 來自: 203.73.66.74 (01/09 19:10)
→ luckznn:大大,有過程嗎?我只有解答,沒過程\/ 01/09 19:11