看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《joewusuper (阿吉)》之銘言: : 題目一: 這題不懂題目到底要我求什麼,也完全無法列式 :     麻煩大家幫忙一下。  : An investor buy one share of stock for 100. : If the share price change as follows : (measured relative to the prior day's price): : Day 1 Up 30% : Day 2 Down 15% : Day 3 Unchanged : Day 4 Chang r% : Day 5 Down 10% : If the pattern of relative price movements observed : on the first 5 days is repeated indefinitely, : how will the price of the share of stock behave in the long run? lim ( 1.3 * 0.85 * 1 * (1+r%) * 0.9 )^n n->∞ lim ( 0.9945 * (1+r%) )^n n->∞ 考慮 0.9945 * (1+r%) = 1 => r % = 1/0.9945 - 1 = x let if r > x , 爆掉 r = x , 維持原價 r < x , 跑到 0 : 題目二:麻煩大家告訴我,用什麼觀念下去求比較快 : A company has 120,000 to spend on the development and promotion : of a new product. The past experience indicates : that if x is spent on development and y is spent on promotion, : then X^(1/2)*Y^(3/2)/30,000*3^(3/2) items can be sold. : (a) To maximize the number of items sold, : how much money should be spend on development. : (b) What is the maximum number of items can be sold? 先知到 x + y = 120000 然後目標是 那數字,分母是常數不管~ 去考慮 x * y^3 的極值 ( 最後再開根號即可 ) 因為 x . y 都大於等於零 利用算幾 x + (y/3) + (y/3) + (y/3) 4 --------------------------- >= √[(x * y^3)/27] 4 ... 等號會發生在 x = y/3 的地方~ 這樣條件應該就都有了:) : 感謝各位的解答囉!! : 如果題目有不清楚我附上網址 : http://www.acad.scu.edu.tw/1/entrance/98exam/DE/95.pdf : 裡面的3.4題~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.42.185.222