看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《noty1311 (木子)》之銘言: : A(0,n) = n+1 n>0 : A(m,0) = A(m-1,1) m>0 : A(m,n) = A(m-1,A(m,n-1)) m,n>0 : What is A(4,1)? : 不知道要怎麼算,我代到一半就放棄了... 以下是我的解答....... A(0,n) = n+1 A(1,n) = A(0,A(1,n-1)) = A(1,n-1) + 1 = A(1,n-2) + 2 = A(1,0) + n = A(0,1) + n = n+2 A(2,n) = A(1,A(2,n-1)) = A(2,n-1) + 2 = A(2,n-2) + 4 = A(2,0) + 2n = A(1,1) + 2n = 2n+3 A(3,n) = A(2,A(3,n-1)) = 2A(3,n-1) + 3 = 2( 2A(3,n-2) + 3 ) + 3 = (2^n)A(3,0) + 3*(1-2^n)/(1-2) = (2^n)A(2,1) + 3*(2^n) - 3 = 5*(2^n) + 3*(2^n) - 3 = 8*(2^n) -3 = 2^(n+3) -3 A(4,1) = A(3,A(4,0)) = A(3,A(3,1)) = A(3,13) = 2^16 - 3 ANS: A(4,1) = 2^16 - 3  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ 這個是特殊的遞迴 好像叫Ackermann function -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.227.134.190
noty1311:感謝 02/05 20:30