作者CRAZYAWIND (怒火燒不盡)
看板Grad-ProbAsk
標題Re: [理工] [線代]有關維度的問題
時間Fri Feb 5 19:56:43 2010
※ 引述《jvvbn0601 (part2)》之銘言:
: Let W={(x1、x2、x3、x4)屬於R^4:x1+x2+x3+x4=0,x1-x2+x3-x4=0}.
: Prove that W is a subspace of R^4 and dim(W)=2
: 請問要怎麼做呢?
x1+x2+x3+x4 = 0
x1-x2+x3-x4 = 0
1. 0屬於W
解上式
2(x1+x3) = 0 x1=-x3
2(x2+x4) = 0 x2=-x4
w=span{[1.0.-1.0][0.1.0.-1] w=span[f.g]
dim(W)=2
令p.q屬於W
p=c1f +c2g
q=d1f +d2g
(αp+βq) = (αc1f+αc2g)+(βd1f+βd2g)
=(αc1+βd1)f + (αc2+βd2)g
滿足加法乘法封閉性
故為子空間
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.163.45.43
推 ntust661:oops 02/05 19:57
→ ntust661:我可以寫因為在R^4中dim = 2 ,所以他是仔空間呢@@ 02/05 19:58
→ CRAZYAWIND:不能 這樣一定0分 他要你證明= = 02/05 19:59
→ iyenn:不能 集合條件改一下就爆了 ex:x1+x2+x3+x4=1 02/05 20:03