看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《shinhwabo (.....)》之銘言: Solving the recurrence T(n)=2T(└√n┘)+㏒n using big-O notation as tight as possible 求板上的高手幫忙解答 thx Assume T(1) = O(1) T(n) = 2T(n^1/2) + logn = 2{2T(n^1/4) + log(n^1/2)} + logn = 4T(n^1/4) + 2*(1/2)logn + logn = 4T(n^1/4) + 2logn = (2^k)T(n^(1/2^k)) + klogn ----(a) //拍謝, 剛剛導錯, 以下修正 T(2) = 2T(1) + log2 = O(1) 則令 n^(1/2^k) = 2 得 k = loglogn T(n) = logn*T(2) + (loglogn)(logn) = O(loglogn * logn) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 58.114.130.207 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.32.189.59
FRAXIS:T(2)變成O(log n)的理由是甚麼? 02/06 13:35
※ 編輯: IDontBite 來自: 114.32.189.59 (02/06 13:52)
JMD:給樓上 因為2^loglogn=logn 02/06 23:24
JMD:求出k=loglogn之後 T(n)=2^loglogn+(loglogn)(logn) 02/06 23:35
honey0024:T(2) = 2T(1) + log2 = O(1) 請問這個式子是代入原式嗎 03/04 23:15