※ 引述《dohard (最近很忙 請來電^^)》之銘言:
: 2.State the central limit theorem as precise as possible.
Let X1,X2,.... be iid with finite mean μ and variance σ^2.
n
(Σ Xi) - nμ
~ i=1
Let Y = ---------------
(nσ^2)^1/2
~
Then lim P{ Y ≦ y } = Φ(y).
n→∞
: 3.Suppose that children are born at Poisson rate of 10 per day in a certain
: hospital. What is the probability that a) at least two babies are born
: during the next hours; b)no babies are born during the next two days?
-α α^x
X~POI(α) --> P(x) = e ------
x!
a) α= 10 babies/day = 10/24 babies/hour
P[X≧2] = 1-P(0)-P(1) = ....
b) α= 10 babies/day = 20 babies/two days
P[X=0] = ....
: 麻煩大家了,因為我沒學過機率,但是我想在最近學會好教朋友,
: 請問有建議買或借哪本書?或是板友可以在線上教學或面教,感恩。
--
┌這篇文章讓你覺得?∮weissxz ──────────────────────┐
│ █●█ █●█ █●█ █●█ █●█ █●█ █●█ │
│ ‵ ′ ‵ ′ ‵ ′ "‵ ′$ ‵ ′ ‧ ‧ ◎ ◎ │
│ " ﹏ " " ︺ " ////// △ / " ︺ " 皿 │
│ 新奇 。溫馨。 *害羞* $儉樸$ #靠夭# +閃釀+ 炸你家 │
└────────────────────────────────────┘
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.247.182