看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《dohard (最近很忙 請來電^^)》之銘言: : 2.State the central limit theorem as precise as possible. Let X1,X2,.... be iid with finite mean μ and variance σ^2. n (Σ Xi) - nμ ~ i=1 Let Y = --------------- (nσ^2)^1/2 ~ Then lim P{ Y ≦ y } = Φ(y). n→∞ : 3.Suppose that children are born at Poisson rate of 10 per day in a certain : hospital. What is the probability that a) at least two babies are born : during the next hours; b)no babies are born during the next two days? -α α^x X~POI(α) --> P(x) = e ------ x! a) α= 10 babies/day = 10/24 babies/hour P[X≧2] = 1-P(0)-P(1) = .... b) α= 10 babies/day = 20 babies/two days P[X=0] = .... : 麻煩大家了,因為我沒學過機率,但是我想在最近學會好教朋友, : 請問有建議買或借哪本書?或是板友可以在線上教學或面教,感恩。 -- ┌這篇文章讓你覺得?∮weissxz ──────────────────────┐ █ ██ ██ ██ ██ ██ █ ‵ ′ ‵ ′ ‵ ′ "‵ ′$ ‵ ′ ‧ ‧ ◎ ◎ " ﹏ " " ︺ " ////// / " ︺ " 新奇 。溫馨。 害羞$儉樸$ #靠夭# +閃釀+ 炸你家 └────────────────────────────────────┘ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.247.182